A_N etc. per pC target polar. meeting 17.08.11 - We normalize carbon polarimeter: pC/H-jet - So far normalization done each pC polar.: BUp, BDn, YUp, YDn mean per fill: \langle pC \rangle_{fill} / \langle H-jet \rangle_{fill} - Can break down further: normalize for each target - Alan has done; e.g. for BDn Horizontal target 1: # A_N etc. per pC target - A_N for all targets >3 fills; mean & stat. uncert. P0 fit: - Relative to fixed A_{N0} (2004 100 GeV) - Blue lines are mean A_N each polar. #### 1st observation: - Thick targets lower A_M - Consistent with: more E-loss in target - ⇒ fixed E-detected - ⇒ higher E-scattered - \Rightarrow lower A # A_N etc. per pC target • A_N for all targets >3 fills normalized Relative to fixed A_{N0} (2004 100 GeV) Blue lines are mean A_N each polar. #### 2nd observation: Mean for each polar. ~consistent each target (except B2Dn, thick targets pull mean down)^{0.95} Mean each polar. OK A_N; perhaps separate A_N for thick targets? ## Thick targets Thick targets more succeptible to orientation→A_N instability Thick targets ~same scatter in A_N as thin (compare slide 1) ## Loose targets "Young Bill" Christie reported a few losse targets; from Alan's set: • No anamalous scatter in A_N ## Summary - Thick targets have lower A_N, as expected from E-loss in target - For 1x thin targets, ~same A_N each polarimeter - one A_N each polar. ~OK - Separate A_N for thick targets? - Motivation to *not* experiment with thick targets... - From one loose target: no anamalous scatter in A_N # Extras ## Measurements, χ^2 , NDOF #### from P0 (constant) fits: